
Jean-Philippe Bempel

@jpbempel

Understanding
Low Latency
JVM GCs

2 •

• Concurrent Marking

• Shenandoah

• Azul’s C4

• ZGC

• How to choose a GC algorithm?

Understanding JVM GC: Advanced!

Concurrent Marking

4 •

• Used in CMS & G1 algorithms already and by all low latency GCs

• Try to mark the whole object graph concurrently with the application running

• Based on Tri-color abstraction & Snapshot-At-The-Beginning algorithm

• Used by CMS, G1, Shenandoah

Concurrent Marking

5 •

Concurrent Marking: Tri-Color Abstraction

6 •

Concurrent Marking: Tri-Color Abstraction

7 •

Concurrent Marking: Tri-Color Abstraction

8 •

Concurrent Marking: Tri-Color Abstraction

9 •

Concurrent Marking: Tri-Color Abstraction

10 •

Concurrent Marking: Tri-Color Abstraction

11 •

Concurrent Marking: Tri-Color Abstraction

12 •

Concurrent Marking: Issues

• New allocations during marking phase can be handled by:

• Marking automatically object at allocation

• Not considering new allocations for the current cycle

• Tri-Color abstraction provides 2 properties of missed object:

1. The mutator stores a reference to a white object into a black object.

2. All paths from any gray objects to that white object are destroyed.

http://www.memorymanagement.org/glossary/s.html#term-snapshot-at-the-beginning

13 •

Concurrent Marking: Issues

A

B

C

A.field1 = C;

B.field2 = null;

14 •

Concurrent Marking: Issues

A

B

C

A.field1 = C;

B.field2 = null;

15 •

Concurrent Marking: Issues

A

B

C

A.field1 = C;

B.field2 = null;

16 •

Concurrent Marking: Issues

A

B

C

A.field1 = C;

B.field2 = null;

OOPS!

17 •

• 2 ways to ensure not missing any marking

• Snapshot-At-The-Beginning

• Incremental Update

• For SATB, Pre-Write Barriers, recording object for marking

• Before a reference assignation (X.f = Y)

• SATB barrier is only active when Marking is on (global state)

Concurrent Marking: Resolving misses

if (SATB_WriteBarrier) {

if (X.f != null)

SATB_enqueue(X.f);

}

cmp BYTE PTR [r15+0x30],0x0

jne 0x000002965edc62e5

[...]

mov r11d,DWORD PTR [rbp+0x74]

test r11d,r11d

je 0x000002965edc6253

mov r10,QWORD PTR [r15+0x38]

mov rcx,r11

shl rcx,0x3

test r10,r10

je 0x000002965edc6318

mov r11,QWORD PTR [r15+0x48]

mov QWORD PTR [r11+r10*1-0x8],rcx

add r10,0xfffffffffffffff8

mov QWORD PTR [r15+0x38],r10

jmp 0x000002965edc6253

mov rdx,r15

movabs r10,0x7ffac2febc50

call r10

jmp 0x000002965edc6253

Shenandoah

19 •

• Non-generational (still option for partial collection)

• Region based

• Use Read Barrier: Brooks pointer

• Self-Healing

• Cooperation between mutator threads & GC threads

• Only for concurrent compaction

• Mostly based on G1 but with concurrent compaction

Shenandoah GC

20 •

• Initial Marking (STW)

• Concurrent Marking

• Final Remark (STW)

• Concurrent Cleanup

• Concurrent Evacuation

• Init Update References (STW)

• Concurrent Update References

• Final Update References (STW)

• Concurrent Cleanup

Shenandoah Phases

21 •

• SATB-style (like G1)

• 2 STW pauses for Initial Mark & Final Remark

• Conditional Write Barrier

• To deal with concurrent modification of object graph

Concurrent Marking

22 •

• Same principle than G1:

• Build CollectionSet with Garbage First!

• Evacuate to new regions to release the region for reuse

• Concurrent Evacuation done with the help of:

• 1 Read Barrier : Brooks pointer

• 4 Write Barriers

• Barriers help to keep the to-space invariant:

• All Writes are made into an object in to-space

Concurrent Evacuation

23 •

• All objects have an additional forwarding pointer

• Placed before the regular object

• Dereference the forwarding pointer for each access

• Memory footprint overhead

• Throughput overhead

Brooks pointers

Header

Brooks pointer

mov r13,QWORD PTR [r12+r14*8-0x8]

24 •

• Any writes (even primitives) to from-space object needs to be protected

• Exotic barriers:

• acmp (pointer comparison)

• CAS

• clone

Write Barriers

if (evacInProgress

&& inCollectionSet(obj)

&& notCopyYet(obj)) {

evacuateObject(obj)

}

test BYTE PTR [r15+0x3c0],0x2

jne 0x000000000281bcbc

[...]

mov r10d,DWORD PTR [r13+0xc]

test r10d,r10d

je 0x000000000281bc2b

mov r11,QWORD PTR [r15+0x360]

mov rcx,r10

shl rcx,0x3

test r11,r11

je 0x000000000281bd0d

[...]

mov rdx,r15

movabs r10,0x62d1f660

call r10

jmp 0x000000000281bc2b

25 •

Concurrent Copy: GC thread

Header

Brooks pointer

From-Space To-Space

26 •

Concurrent Copy: GC thread

Header

Brooks pointer

From-Space To-Space

GC thread

27 •

Concurrent Copy: GC thread

Header

Brooks pointer

Header

Brooks pointer

From-Space To-Space

GC thread

28 •

Concurrent Copy: GC thread

Header

Brooks pointer

Header

Brooks pointer

From-Space To-Space

GC thread

29 •

Concurrent Copy: Reader threads

Header

Brooks pointer

From-Space To-Space

Reader

thread
Reader

thread

30 •

Concurrent Copy: Writer threads

Header

Brooks pointer

From-Space To-Space

31 •

Concurrent Copy: Writer threads

Header

Brooks pointer

From-Space To-Space

Writer

thread

Writer

thread

32 •

Concurrent Copy: Writer threads

Header

Brooks pointer

Header

Brooks pointer

From-Space To-Space

Writer

thread

Writer

thread

33 •

Concurrent Copy: Writer threads

Header

Brooks pointer

Header

Brooks pointer

From-Space To-Space

Writer

thread

Writer

thread

Header

Brooks pointer

34 •

Concurrent Copy: Writer threads

Header

Brooks pointer

Header

Brooks pointer

From-Space To-Space

Writer

thread

Writer

thread

Header

Brooks pointer

35 •

Concurrent Copy: Writer threads

Header

Brooks pointer

Header

Brooks pointer

From-Space To-Space

Writer

thread

Writer

thread

Header

Brooks pointer

36 •

Concurrent Copy: Writer threads

Header

Brooks pointer

Header

Brooks pointer

From-Space To-Space

Writer

thread

Writer

thread

37 •

• Late memory release

• Only happens when all refs updated (Concurrent Cleanup phase)

• Allocations can overrun the GC

• Failure modes:

• Pacing

• Degenerated GC

• FullGC

Extreme cases

38 •

• Since JDK13, notable changes introduced

• Load Reference Barrier

• Baker-style barrier (Relocation)

• Evaluated at reference load time

• Eliminating forward pointer word

• Store forward information into Mark word

• Remove Brooks pointer

Shenandoah 2.0?

Azul’s C4

40 •

• Generational (young & old)

• Region based (pages)

• Use Read Barrier: Loaded Value Barrier

• Self-Healing

• Cooperation between mutator threads & GC threads

• Pauseless algorithm but implementation requires safepoints

• Pauses are most of the time < 1ms

Continuously Concurrent Compacting Collector

41 •

• Baker-style based Barrier

• move objects through forwarding addresses stored aside

• Applied at load time, not when dereferencing

• Fused marking & relocation state

• Ensure C4 invariants:
• Marked Through the current cycle

• Not relocated

• If not => Self-healing process to correct it
• Mark object

• Relocate & correct reference

• Checked for each reference loads

• Benefits from JIT optimization for caching loaded value (registers)

LVB

42 •

• States of objects stored inside reference address => Colored pointers

• NMT bit

• Remapped/Generation

• Checked against a global expected value during the GC cycle

• Thread local, almost always L1 cache hits

• Register

• Unmasking reference addresses:

• Linux Kernel module, aliasing

• memfd, multi-mapping

LVB

test r9, rax

jne 0x3001443b

mov r10d, dword ptr [rax + 8]

43 •

Virtual Memory vs Physical Memory

Virtual Memory

Physical Memory

0 2^64

0 2^37

44 •

• All phases are fully parallel & concurrent

• No "rush" to finish phases

• No constraint about STW pause to be short

• Physical memory released quickly in relocation phase

• Can be reused for new allocations

• Plenty of virtual space vs physical memory

C4 Phases

45 •

• Mark

• Marking all objects in graph

• Relocation

• Moving objects to release pages

• Remap

• Fixup references in object graph

• Folded with next mark cycle

C4 Phases

46 •

• Precise Wavefront Marking

• Single pass

• No final mark/remark

• Self-Healing: Mark object that are not marked for the current cycle

Mark Phase

47 •

Mark Phase: Concurrent Modification

A

B

C

A.field1 = C;

B.field2 = null;

48 •

Mark Phase: Concurrent Modification

A

B

C

A.field1 = C;

B.field2 = null;

49 •

Mark Phase: Concurrent Modification

A

B

C

A.field1 = C;

B.field2 = null;

LVB

50 •

Mark Phase: Concurrent Modification

A

B

C

A.field1 = C;

B.field2 = null;

LVB

51 •

• Scanning roots (Static var, Thread stacks, register, JNI handles)

• GC threads scans stalled threads

• Running threads scans their own stack stopping individually at Safepoint

• Scanning object graph like a parallel collector

• Newly allocated objects into new pages, not considered for reclaim (relocation)

• For each page, summing live data bytes, used to select page to reclaim

Mark Phase

52 •

• Select pages with the greatest number of dead objects (garbage first!)

• Protect page selected from being accessed by mutators thread

• Move objects to new allocated pages

• Build side arrays (off heap tables) for forwarding information

• Self-Healing: As protected, LVB will trigger a trap to:

• Copy object to the new location if not done

• Use forward pointer to fix the reference

Relocation Phase

53 •

Virtual

Physical

Relocation Phase

54 •

Virtual

Physical

Relocation Phase

55 •

Virtual

Physical

Relocation Phase

56 •

Virtual

Physical

Relocation Phase

57 •

Virtual

Physical

Relocation Phase

58 •

Virtual

Physical

Relocation Phase

59 •

Virtual

Physical

Relocation Phase

Forwarding table

60 •

Virtual

Physical

Relocation Phase

Forwarding table

61 •

Virtual

Physical

Relocation Phase

Forwarding table

62 •

Virtual

Physical

Relocation Phase

Forwarding table

63 •

• Few chances mutators stall on accessing a ref as processing mostly dead pages

• Once object copy done, physical memory is released (Quick Release)

• Can be immediately reused (remapped) to satisfy new allocations

• Pages evacuated are still mapped & protected to help remap phase

• Cannot be released until all objects are remapped

• Not a problem as we have a huge virtual address space

Relocation Phase

64 •

• Traverse Object Graph and fixup references

• Execute LVB barrier for each object

• Self-Healing: fixup references using forward information

• As we traverse again, mark for the next phase

• Mark & Remap phases are folded!

Remap Phase

65 •

• Algorithm requires a sustainable rate or remapping operations

• Linux limitations:

• TLB invalidation

• Only 4KB pages can be remapped

• Single threaded remapping (write lock)

• Kernel module implements API for the Zing JVM to increase significantly the remapping rate

• Implements also virtual address aliasing for addressing objects with metadata

Remap – Kernel module

66 •

• Young & Old collections done by same algorithm and can be concurrent

• Size of the generation are dynamically adjusted

• Card Marking with write barrier (Stored Value Barrier)

• Old collection is based on young-to-old roots generated by previous young cycle

• Young collection will perform card scanning per page

• hold an eventual concurrent Old collection per page scanned

Generational

67 •

• Used by Hadoop Name Node

• 580GB Heap

• Very hard to tune with G1

• No issue so far regarding GC since production roll out (Oct 2017)

C4 @ Criteo

Z GC

69 •

• Non generational

• Region based (zPages, dynamically sized)

• Concurrent Marking, Compaction, Ref processing

• Use Colored Pointers & Read/Load Barrier

• Self-Healing

• Cooperation between mutator threads & GC threads

• Experimental in JDK 11 (-XX:+UnlockExperimentalVMOptions –XX:+UseZGC)

Z GC

mov r10,QWORD PTR [r11+0xb0]

test QWORD PTR [r15+0x20],r10

jne 0x00007f9594cc54b5

70 •

Z GC

71 •

• Initial Mark (STW)

• Concurrent Mark/Remap

• Final Mark (STW)

• Concurrent Prepare for Relocation

• Start Relocate (STW)

• Concurrent Relocate

Z GC phases:

72 •

• Store metadata in unused bits of reference address

• 42 bits for addressing (4TB)

• 44 bits (16TB) for JDK 13

• 4 bits for metadata

• Marked0

• Marked1

• Remapped

• Finalizable

Colored Pointers

73 •

• Colored pointers needs to be unmasked for dereferencing

• Some HW support masking (SPARC, Aarch64))

• On linux/windows, overhead if done with classical instructions

• Only one view is active at any point

• Plenty of Virtual Space

Multi-Mapping

74 •

Multi-Mapping

Virtual Memory

Physical Memory

0 2^64

0 2^37

(marked0)

001<address>

(marked1)

010<address>

(remapped)

100<address>

75 •

Memory Usage

76 •

• Pages are multiple of 2MB

• 3 different groups

• Small: 2MB pages with object size <= 256KB

• Medium: 32MB pages with object size <= 4MB

• Large: 2MB pages, objects span over multiple of them

• Objects in Large group are meant to not to be relocated (too expensive)

Page Allocations

77 •

• Unmasking ref addresses

• C4: Kernel module aliasing

• Z: Multi-mapping or HW support

• Pages & Relocation

• C4:

• Page are fixed (2MB)

• relocation for large objects by remapping

• Z:

• zPages are dynamic, a zPage can be 100MB large

• No relocation for large objects

Difference between C4 & Z GC

How to choose a GC algorithm

79 •

• You have to run on Windows

• Shenandoah

• Battlefield tested GC (maturity)

• C4

• Shenandoah

• Minimizing any kind of JVM pauses

• C4

• Z

• You don’t want pay for it:

• Shenandoah

• Z

Low latency GCs

References

81 •

• Java Garbage Collection distilled by Martin Thompson

• The Java GC mini book

• Oracle’s white paper on JVM memory management & GC

• What differences JVM makes by Nitsan Wakart

• Memory Management Reference

• IBM Pause-Less GC

References GC Basics

http://www.infoq.com/articles/Java_Garbage_Collection_Distilled/
http://www.infoq.com/resource/minibooks/java-garbage-collection/en/pdf/The-Java-Garbage-Collection-Mini-book.pdf
http://www.oracle.com/technetwork/java/javase/tech/memorymanagement-whitepaper-1-150020.pdf
https://psy-lob-saw.blogspot.com/2018/01/what-difference-jvm-makes.html
http://www.memorymanagement.org/
http://www.memorymanagement.org/

82 •

• Shenandoah: An open-source concurrent compacting garbage collector for OpenJDK

• Shenandoah: The Garbage Collector That Could by Aleksey Shipilev

• Shenandoah GC Wiki

• Load Reference Barriers by Roman Kennke

• Eliminating forward pointer word by Roman Kennke

References Shenandoah

https://www.researchgate.net/profile/Christine_Flood/publication/306112816_Shenandoah_An_open-source_concurrent_compacting_garbage_collector_for_OpenJDK/links/5a0de9230f7e9b7d4dba54f9/Shenandoah-An-open-source-concurrent-compacting-garbage-collector-for-OpenJDK.pdf?origin=publication_detail
https://www.youtube.com/watch?v=VCeHkcwfF9Q
https://wiki.openjdk.java.net/display/shenandoah/Main
https://rkennke.wordpress.com/2019/05/15/shenandoah-gc-in-jdk13-part-i-load-reference-barriers/
https://rkennke.wordpress.com/2019/05/16/shenandoah-gc-in-jdk-13-part-ii-eliminating-forward-pointer-word/

83 •

• The Pauseless GC algorithm (2005)

• C4: Continuously Concurrent Compacting Collector (2011)

• Azul GC in Detail by Charles Humble

• 2010 version source code

References C4

https://www.usenix.org/legacy/events/vee05/full_papers/p46-click.pdf
http://paperhub.s3.amazonaws.com/d14661878f7811e5ee9c43de88414e86.pdf
https://www.infoq.com/articles/azul_gc_in_detail
https://github.com/GregBowyer/ManagedRuntimeInitiative/tree/master/MRI-J/hotspot/src/azshare/vm/gc_implementation/genPauseless

84 •

• ZGC - Low Latency GC for OpenJDK by Per Liden

• Java's new Z Garbage Collector (ZGC) is very exciting by Richard Warburton

• A first look into ZGC by Dominik Inführ

• Architectural Comparison with C4/Pauseless

• ZGC Heap Size and RSS counters

References ZGC

https://www.youtube.com/watch?v=tShc0dyFtgw
https://www.opsian.com/blog/javas-new-zgc-is-very-exciting/
https://dinfuehr.github.io/blog/a-first-look-into-zgc/
http://mail.openjdk.java.net/pipermail/zgc-dev/2017-December/000047.html
http://mail.openjdk.java.net/pipermail/zgc-dev/2017-December/000009.html

Thank You!

@jpbempel

